ارایه مدلی مناسب با استفاده از ماشین بردار پشتیبان برای پیشبینی غلظت روزانه مونوکسیدکربن در هوای شهر تهران
Authors
Abstract:
Backgrounds and Objectives: Precise air pollutants prediction, as the first step in facing air pollution problem, could provide helpful information for authorities in order to have appropriate actions toward this challenge. Regarding the importance of carbon monoxide (CO) in Tehran atmosphere, this study aims to introduce a suitable model for predicting this pollutant. Materials and Method: We used the air pollutants and meteorological data of Gholhak station located in the north of Tehran these data provided 12 variables as inputs for predicting the average CO concentration of the next day. First, support vector machine (SVM) model was used for forecasting CO daily average concentration. Then, we reduced the SVM inputs to seven variables using forward selection (FS) method. Finally, the hybrid model, FS-SVM, was developed for CO daily average concentration forecasting. Result: In the research, we used correlation coefficient to evaluate the accuracy of both SVM and FS-SVM models. Findings indicated that correlation coefficient for both models in testing step was equal (R~0.88). It means that both models have proper accuracy for predicting CO concentration. However, it is noteworthy that FS-SVM model charged fewer amounts of computational and economical costs due to fewer inputs than SVM model. Conclusion: Results showed that although both models have relatively equal accuracy in predicting CO concentration, FS-SVM model is the superior model due to its less number of inputs and therefore, less computational burden.
similar resources
ارائهی روشی پویا برای پیشبینی مکانی-زمانی آلودگی هوای شهر تهران بر مبنای ماشین بردار پشتیبان
با توجه به آثار سوء آلودگی هوا بر سلامت انسانها و محیط، پیشبینی و مدلسازی این پدیده از جمله مسائل مهم در چند دههی گذشته بوده است. دینامیک غیرخطی و حجم بالای دادههای آلودگی هوا، مشکلات پیشبینی این پدیدهی پیچیده را، بویژه در پردازشهای پویا، دوچندان کرده است. هدف این پژوهش، ارائهی الگوریتمی برخط است که بتواند با حل مشکلات روشهای پیشین در پیشبینی برخط آلودگی هوا، سری زمانی آلودگی هوای شه...
full textتوسعة مدلی مناسب بر مبنای شبکة عصبی مصنوعی و ماشین بردار پشتیبان برای پیشبینی بهنگام اکسیژنخواهی بیوشیمیایی 5 روزه
محدودیت سنسورهای سختافزاری برای اندازهگیری برخی مشخصههای کیفی آب مانند اکسیژنخواهی بیوشیمیایی 5 روزه (BOD5) که از لحاظ زمانی هزینهبر هستند، تلاشها را به سمت استفاده از سنسورهای نرمافزای برای پیشبینی بهنگام BOD5 سوق داده است. هدف اصلی مقاله مذکور نیز توسعة سنسور نرمافزاری مناسب بر مبنای مدلهای هوشمند شبکة عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) برای تخمین بهنگام BOD5 در رودخانة س...
full textبررسی دستکاری قیمت¬ها در بورس اوراق بهادار تهران با استفاده از مدل ماشین بردار پشتیبان
دستکاری قیمتها، از جمله عواملی است که موجب بیاعتمادی سرمایهگذاران به بازار سهام شده و مانع رشد و شکوفایی آن میشود. هدف اصلی این پژوهش پیشبینی دستکاری قیمتها با استفاده از مدل ماشین بردار پشتیبان است. این مدل جهت طبقهبندی و تفکیک گروهها بهکار میرود و دادههای مورد بررسی آن باید خطی باشند. هر چند که دادههای مورد استفاده در پژوهش خطی نبودند ولی با استفاده از روش آماری تجزیه و تحلیل اجزا...
full textپیشبینی رواناب روزانه با مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)
مدلهای داده محور از جمله ابزارهایی هستند که به منظور شبیهسازی در علوم مختلف استفاده میشوند. روش ماشین بردار پشتیبان به عنوان یکی از جدیدترین این نوع ابزارها اخیراً در علوم مرتبط با آب مورد توجه قرار گرفته است. در هیدرولوژی و منابع آب، این مدلها با شبیهسازی فرآیند بارش-رواناب، مقدار رواناب را در حوزههای آبخیز بدون ایستگاه اندازهگیری و با حداقل زمان ممکن و کمترین هزینه برآورد میکنند. هدف ا...
full textMy Resources
Journal title
volume 6 issue None
pages 1- 10
publication date 2013-05
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023